319 research outputs found

    Adaptive DCTNet for Audio Signal Classification

    Full text link
    In this paper, we investigate DCTNet for audio signal classification. Its output feature is related to Cohen's class of time-frequency distributions. We introduce the use of adaptive DCTNet (A-DCTNet) for audio signals feature extraction. The A-DCTNet applies the idea of constant-Q transform, with its center frequencies of filterbanks geometrically spaced. The A-DCTNet is adaptive to different acoustic scales, and it can better capture low frequency acoustic information that is sensitive to human audio perception than features such as Mel-frequency spectral coefficients (MFSC). We use features extracted by the A-DCTNet as input for classifiers. Experimental results show that the A-DCTNet and Recurrent Neural Networks (RNN) achieve state-of-the-art performance in bird song classification rate, and improve artist identification accuracy in music data. They demonstrate A-DCTNet's applicability to signal processing problems.Comment: International Conference of Acoustic and Speech Signal Processing (ICASSP). New Orleans, United States, March, 201

    Hierarchically Structured Reinforcement Learning for Topically Coherent Visual Story Generation

    Full text link
    We propose a hierarchically structured reinforcement learning approach to address the challenges of planning for generating coherent multi-sentence stories for the visual storytelling task. Within our framework, the task of generating a story given a sequence of images is divided across a two-level hierarchical decoder. The high-level decoder constructs a plan by generating a semantic concept (i.e., topic) for each image in sequence. The low-level decoder generates a sentence for each image using a semantic compositional network, which effectively grounds the sentence generation conditioned on the topic. The two decoders are jointly trained end-to-end using reinforcement learning. We evaluate our model on the visual storytelling (VIST) dataset. Empirical results from both automatic and human evaluations demonstrate that the proposed hierarchically structured reinforced training achieves significantly better performance compared to a strong flat deep reinforcement learning baseline.Comment: Accepted to AAAI 201
    • …
    corecore